

SSC8LA22GN6

N-Channel Enhancement Mode MOSFET

Features

V _{DS}	V _{GS}	R _{DS(ON)} Typ.	l _D
100V	+20V	4.4mΩ@10V	112A
	<u> </u>	5.7mΩ@4V5	HZA

Description

This device is N-Channel enhancement MOSFET.

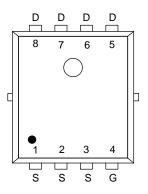
Uses SGT technology and design to provide excellent

RDSON with low gate charge. This device is suitable
for use in DC-DC conversion, power switch and
charging circuit.

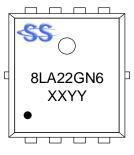
100% UIS + ΔVDS + Rg Tested!

Applications

- DC/DC converters
- Power supplies
- Motor Drive Control
- Synchronous rectification


Ordering Information

Device	Package	Shipping	
SSC8LA22GN6	PDFN5X6-8L	5000/Reel	


> Pin Configuration

PDFN5X6-8L

Pin Configuration (Top View)

Marking

(XXYY: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit	
V_{DSS}	Drain-to-Source Volta	Drain-to-Source Voltage		V
V _{GSS}	Gate-to-Source Volta	ge	±20	V
	Cartinosas Duain Commente		112	Δ.
I _D	Continuous Drain Current	T _C =100℃	62	- A
	Outine Dair Out 1	T _A =25℃	18	Δ.
IDSM	I _{DSM} Continuous Drain Current ^a	T _A =70°C	13	- A
Ірм	Pulsed Drain Curren	Pulsed Drain Current ^b		Α
Б	Danier Diagination C	Tc=25℃	114	10/
P _D	Power Dissipation •	$T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{C}=100^{$	46	W
	Danier Diagination 2	tinuous Drain Current d $T_C=100^{\circ}C$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ Pulsed Drain Current b Power Dissipation c $T_C=100^{\circ}C$ $T_C=100^{\circ}C$ $T_C=100^{\circ}C$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ Avalanche Current b L=0.5mH Single Pulse Avalanche Energy b L=0.5mH Single Pulse	2.9	W
P _{DSM}	Power Dissipation a	T _A =70°C	1.9	
las	Avalanche Current ^b L=0.5mH Single Pulse		21	Α
Eas	Avalanche Energy ^b L=0.5mH Single Pulse		110	mJ
TJ	Operation junction temperature		-55~150	°C
T _{STG}	Storage temperature ra	ange	-55~150	$^{\circ}\mathbb{C}$

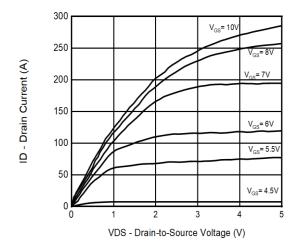
➤ Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Max.	Unit
R _{θJA}	Junction-to-Ambient Thermal Resistance ^a	43	60	°C/W
$R_{ heta JC}$	Junction-to-Case Thermal Resistance	1.1	1.5	C/VV

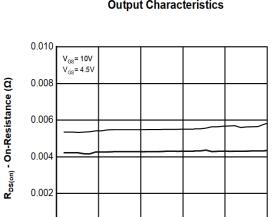
Note:

- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A=25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

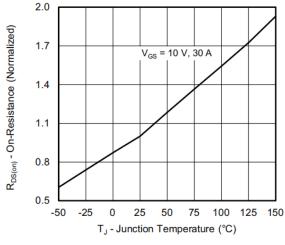
SSC-V1.2 www.sscsemi.com Analog Future


SSC8LA22GN6

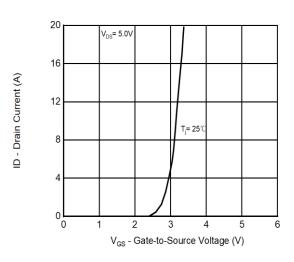
\succ Electrical Characteristics (T_A=25°C unless otherwise noted)


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	100			V
Gate Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}$, $I_D = 250uA$	1		2.5	V
Drain-Source On-Resistance	D	V _{GS} = 10V, I _D = 30A		4.4	5.7	mΩ
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5V, I _D = 20A		5.7	7.4	11122
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 100V, V _{GS} = 0V			1	μA
Gate-Source Leak Current	Igss	V _{GS} = ±20V, V _{DS} = 0V			±100	nA
Forward Voltage	V _{SD}	V _{GS} = 0V, I _S = 30A		0.86	1.3	V
Gate Resistance	R _G	V _{DS} = 0V, f = 1MHz		1.3		Ω
Input Capacitance	Ciss	\/ - 50\/ \/ - 0\/		3781		
Output Capacitance	Coss	$V_{DS} = 50V$, $V_{GS} = 0V$, $f = 1MHz$		1038		pF
Reverse Transfer Capacitance	C _{RSS}	T I TIVITZ		22		
Total Gate Charge	Q _G	\\ -40\\\\ -50\\		44		
Gate to Source Charge	Q _G s	V _{GS} = 10V, V _{DS} = 50V,		12		nC
Gate to Drain Charge	Q _{GD}	- I _D = 30A		9.8		
Turn-on Delay Time	T _{D(ON)}			11		
Rise Time	Tr	V _{GS} = 10V, V _{DS} = 50V, R _L		19		<u> </u>
Turn-off Delay Time	T _{D(OFF)}	= 1Ω , $R_G = 3\Omega$		26		ns
Fall Time	T _f			14		
Diode Recovery Time	Trr	I _F =30A, di/dt=500A/us		31		ns
Diode Recovery Charge	Qrr	I _F =30A, di/dt=500A/us		195		nC

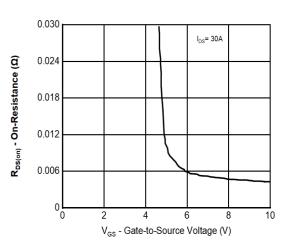
Typical Performance Characteristics (T_A=25℃ unless otherwise noted)

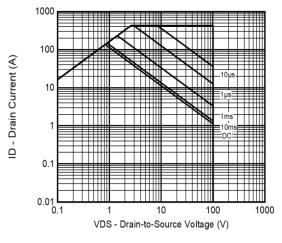


Output Characteristics

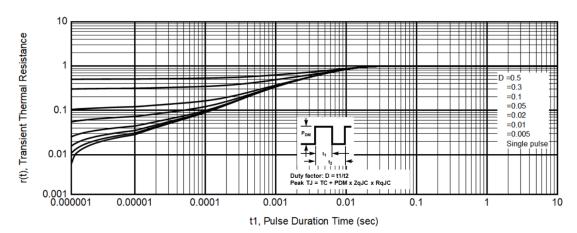


On-Resistance vs. Drain Current and Gate Voltage


ID - Drain Current (A)

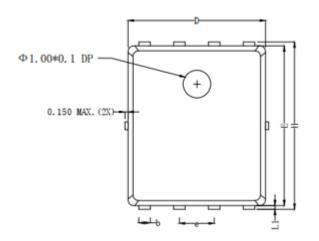

On-Resistance vs. Junction Temperature

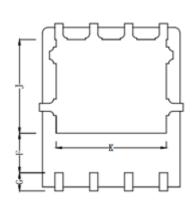
Transfer Characteristics

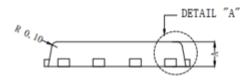


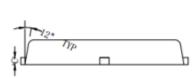
On-Resistance vs. Gate-to-Source Voltage

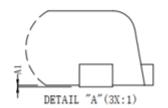
Safe Operating Area






Transient Thermal Resistance, Junction to case




> Package Information

Symbol	Dimensions In Millimeters				
	Min.	Nom.	Max.		
Α	0.90	1.00	1.10		
A1	0.00	0.03	0.05		
b	0.25	0.03	0.35		
С		0.254 REF			
D	4.80	4.90	5.00		
F	1.35 REF				
E	5.65	5.75	5.85		
е	1.27 BSC				
Н	5.90	6.00	6.10		
L1	0.10	0.13	0.16		
G	0.55 REF				
К	4.00 REF				
J	3.45 REF				

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.